

Ergänzende Bedingungen TAR 4110

Gültig ab: 01.08.2023

Die vorliegenden Ergänzende Bedingungen TAR 4110 der Stadtwerke Ulm/Neu-Ulm Netze GmbH (nachfolgend kurz "TAR" genannt) gelten für den Anschluss und den Betrieb von Bezugs- und Erzeugungsanlagen (darunter auch Mischanlagen, Speicher und Ladeeinrichtungen für Elektrofahrzeuge) an das Mittelspannungsnetz der Stadtwerke Ulm/Neu-Ulm Netze GmbH (nachfolgend kurz "SWUN" genannt) sowie bei einer Erweiterung oder Änderung bestehender Kundenanlagen.

Es gelten die allgemein anerkannten Regeln der Technik, insbesondere die VDE-Anwendungsregel "Technische Regeln für den Anschluss von Kundenanlagen an das Mittelspannungsnetz und deren Betrieb (TAR Mittelspannung)" (nachfolgend kurz "VDE-AR-N 4110" genannt).

<u>Die vorliegenden TAR Mittelspannung konkretisieren die VDE-AR-N 4110. Die Gliederung lehnt sich an die Struktur der VDE-AR-N 4110 an und formuliert die Spezifikationen zu den einzelnen Kapiteln dieser VDE-Anwendungsregel.</u>

Falls in dieser TAR Mittelspannung keine weitere Spezifikation zu einzelnen Kapiteln der VDE-AR-N 4110 erfolgt, wird darauf mit dem Hinweis "keine Ergänzung" hingewiesen.

Inhalt

Zu 1	Anwendungsbereich	1
Zu 2	Normative Verweisungen	1
Zu 3	Begriffe und Abkürzungen	1
Zu 4	Allgemeine Grundsätze	1
Zu 4.1	Bestimmungen und Vorschriften	1
Zu 4.2	Anschlussprozess und anschlussrelevante Unterlagen	2
Zu 4.2.1	Allgemeines	2
4.2.2 –	4.2.4	2
Zu 4.2.5	Vorbereitung der Inbetriebsetzung der Übergabestation	2
Zu 4.3	Inbetriebnahme des Netzanschlusses/Inbetriebsetzung der Übergabestation	2
Zu 4.4	Inbetriebsetzung der Erzeugungsanlage	2
Zu 5	Netzanschluss	3
Zu 5.1	Grundsätze für die Ermittlung des Netzanschlusspunktes	3
Zu 5.2 –	- 5.4.6	3
Zu 5.4.7	7 Tonfrequenz-Rundsteuerung	3
Zu 5.4.8	3 – 5.5	3
Zu 6	Übergabestation	3
Zu 6.1	Baulicher Teil	3
Zu 6.1.1	Allgemeines	3
Zu 6.1.2	Einzelheiten zur baulichen Ausführung	4
Zu 6.1.2	2.1 Allgemeines	4
Zu 6.1.2	2.2 Zugang und Türen	4
Zu 6.1.2	2.3 Fenster	4
Zu 6.1.2	2.4 Klimabeanspruchung, Belüftung und Druckentlastung	4
Zu 6.1.2	2.5 Fußböden	4
Zu 6.1.2	2.6 Schallschutzmaßnahmen und Auffangwannen	4
Zu 6.1.2	2.7 Trassenführung der Netzanschlusskabel	4
Zu 6.1.2	2.8 – 6.1.3.2	4
Zu 6.2	Elektrischer Teil	5
Zu 6.2.1	Allgemeines	5
Zu 6.2.1	1 Allgemeine technische Daten	5
Zu 6.2.1	2 Kurzschlussfestigkeit	5
Zu 6.2.1	3 Schutz gegen Störlichtbogen	5
Zu 6.2.1	4 Isolation	6
Zu 6.2.2	Schaltanlagen	6

Zu 6.2.2.1 Schaltung und Aufbau6	
Zu 6.2.2.2 Ausführung	6
Zu 6.2.2.3 – 6.2.2.5	7
Zu 6.2.2.6 Transformatoren	7
Zu 6.2.2.7 Wandler	7
Zu 6.2.2.8 Überspannungsableiter	7
Zu 6.2.3 Sternpunktbehandlung	7
Zu 6.2.4 Erdungsanlage	7
Zu 6.3 Sekundärtechnik	7
Zu 6.3.1 Allgemeines	7
Zu 6.3.2 Fernwirk- und Prozessdatenübertragung an die netzführende Stell	e7
Zu 6.3.3 Eigenbedarfs- und Hilfsenergieversorgung	14
Zu 6.3.4. – 6.3.4.3	15
Zu 6.3.4.3.1 Allgemeines	15
Zu 6.3.4.3.2 HH-Sicherung	15
Zu 6.3.4.3.3 Abgangsschaltfelder	16
Zu 6.3.4.3.4 – 6.3.4.4	16
Zu 6.3.4.5 Schnittstellen für Schutzfunktions-Prüfungen	16
Zu 6.3.4.6 – 6.4	16
Zu 7 Abrechnungsmessung	16
Zu 7.1 Allgemeines	16
Zu 7.2 Zählerplatz	16
Zu 7.3 Netz-Steuerplatz	16
Zu 7.4 Messeinrichtungen	16
Zu 7.5 Messwandler	17
Zu 7.6 Datenfernübertragung	18
Zu 7.7 Spannungsebene der Abrechnungsmessung	18
Zu 8 Betrieb der Kundenanlage	18
Zu 8.1 Allgemeines	18
Zu 8.2 – 8.4	19
Zu 8.5 Bedienung vor Ort	19
Zu 8.6 Instandhaltung	19
Zu 8.7 Kupplung von Stromkreisen	19
Zu 8.8 Betrieb bei Störungen	19
Zu 8.9. – 8.13	19
Zu 9 Änderungen, Außerbetriebnahmen und Demontage	19

Zu 10 Erzeugungsanlagen20	
Zu 10.1 – 10.2.2.3	20
Zu 10.2.2.4 Verfahren zur Blindleistungsbereitstellung	20
Zu 10.2.3.1 Allgemeines	22
Zu 10.2.3.2 – 10.3.3	22
Zu 10.3.3.1 Allgemeines	22
Zu 10.3.3.2 – 10.3.3.3	22
Zu 10.3.3.4 Q-U-Schutz	22
Zu 10.3.3.5 Übergeordneter Entkupplungsschutz	22
Zu 10.3.3.6 – 10.3.4.2	22
Zu 10.3.4.2.1 Übergeordneter Entkupplungsschutz	22
Zu 10.3.4.2.2 Entkupplungsschutz an den Erzeugungseinheiten	22
Zu 10.3.4.3 – 10.3.5.3	23
Zu 10.3.5.3.1 Übergeordneter Entkupplungsschutz	23
Zu 10.3.5.3.2 Entkupplungsschutz an den Erzeugungseinheiten	23
Zu 10.3.5.4 – 10.6.4	23
Zu 11 Nachweis der elektrischen Eigenschaften für Erzeugungsanlagen	23
Zu 11.1 – 11.5.4	23
Zu 11.5.5 Betriebsphase	23
Zu 12 Prototypen-Regelung	24
Anhänge und Anlagenhistorie	24
Anhang 1 Prozessablaufdiagramm Bau einer kundeneigenen Übergabestation	24
Anhang 2 Formulare	25
Anhang 3 Fristen	25
Anhang 4 Standard Anlagenkonfigurationen	26
Änderungshistorie	27

Zu 1 Anwendungsbereich

Diese TAR Mittelspannung gelten auch für Änderungen in Kundenanlagen, die wesentliche Auswirkungen auf die elektrischen Eigenschaften der Kundenanlage (bezogen auf den Netzanschlusspunkt) haben. Die in der VDE-AR-N 4110 benannten wesentlichen Änderungen werden um die Nutzungsänderung "Teilnahme am Regelmarkt" ergänzt. Diese ist der SWUN ebenfalls mitzuteilen und erfordert weitere Abstimmungen. Der Anschlussnehmer trägt die Kosten der dadurch an seinem Netzanschluss entstehenden Folgemaßnahmen. Für die technische Ausführung eines Netzanschlusses wie auch für den umgebauten und erweiterten Teil einer Kundenanlage gilt jeweils die zum Erstellungs- oder Umbau-Zeitpunkt gültige TAR.

Für Verweise auf die Internetseite der SWUN gilt die Adresse: "Stadtwerke Ulm/Neu-Ulm Netze GmbH (www.ulm-netze.de)"

Die Anschlussnehmer und Anschlussnutzer verpflichten sich, die Einhaltung dieser TAR Mittelspannung sicherzustellen und auf Anforderung nachzuweisen. Sie gewährleisten, dass auch diejenigen, die neben ihnen den Anschluss nutzen, dieser Verpflichtung nachkommen. Die SWUN behält sich vor, eine Kontrolle der Einhaltung dieser TAR Mittelspannung vorzunehmen. Werden Mängel festgestellt, so kann die nachgelagerte Anschlussnutzung bis zur Mängelbeseitigung ausgesetzt werden. Durch die Kontrolle der Kundenanlage sowie durch deren Anschluss an das Verteilnetz übernimmt die SWUN keine Haftung für die Mängelfreiheit der Kundenanlage.

Erzeugungsanlagen, die gemäß der VDE-AR-N 4110 nach VDE-AR-N 4105 "Erzeugungsanlagen am Niederspannungsnetz" auszuführen sind, dürfen stattdessen auch nach den Anforderungen VDE-AR-N 4110 ausgeführt und zertifiziert werden. Die Anforderungen der VDE-AR-N 4110 sind in diesem Fall vollumfänglich zu erbringen.

Im Falle einer wesentlichen Änderung der Anlage behält sich die SWUN vor, diese in Bezug auf aktuellen Vorgaben der SWUN sowie allgemeingültigen Normen und Vorschriften neu zu bewerten und ggf. Auflagen zu benennen. Wesentliche Änderungen sind z.B. Nutzungsänderungen (Bezugs-/Einspeiseanlage). Grundsätzlich liegt es im Ermessen der SWUN, wann eine wesentliche Änderung vorliegt. Unabhängig davon muss die Personen- und Betriebssicherheit muss zu jedem Zeitpunkt gewährleistet sein und ist durch den Anlagenbetreiber sicherzustellen.

Zu 2 Normative Verweisungen

Keine Ergänzungen

Zu 3 Begriffe und Abkürzungen

Keine Ergänzungen

Zu 4 Allgemeine Grundsätze

Zu 4.1 Bestimmungen und Vorschriften

Kundenanlagen sind unter Beachtung der geltenden gesetzlichen Bestimmungen, der behördlichen Vorschriften oder der Verfügungen, nach den allgemein anerkannten Regeln der Technik, insbesondere nach den DIN-VDE-Normen, den Arbeitsschutz- und den Unfallverhütungsvorschriften der zuständigen Berufsgenossenschaften, der Betriebssicherheitsverordnung und den technischen Anforderungen des Netzbetreibers zu errichten, anzuschließen und zu betreiben, so dass unzulässige Rückwirkungen auf das Netz oder andere Kundenanlagen ausgeschlossen werden.

Der Anschlussnehmer hat sicherzustellen, dass die vorgenannten Bedingungen seinem Anlagenerrichter und seinem Anlagenbetreiber bekannt sind und von diesem eingehalten werden. Der Anschluss an das Netz ist im Einzelnen in der Planungsphase – vor Bestellung der wesentlichen Komponenten – mit dem Netzbetreiber abzustimmen. Planung, Errichtung und Anschluss der Kundenanlage an das Netz des Netzbetreibers sind durch geeignete Fachfirmen vorzunehmen. Der Netzbetreiber darf Änderungen und Ergänzungen an zu errichtenden Anlagen fordern, soweit diese für den sicheren und störungsfreien Netzbetrieb notwendig sind. Die Änderungen bzw. Ergänzungen sind vom Netzbetreiber technisch zu begründen. Die hier vorliegenden ergänzenden Hinweise sind dem Anlagenplaner und der ausführenden Elektrotechnikfirma weiterzuleiten bzw. eventuellen Ausschreibungen beizulegen.

Zu 4.2 Anschlussprozess und anschlussrelevante Unterlagen

Zu 4.2.1 Allgemeines

Antragstellung für Netzanschluss Bezugsanlagen (Mittelspannung) und Antragstellung für Eigenerzeugungsanlagen (Mittelspannung) sind über das Netzanschlussportal der Stadtwerke Ulm / Neu-Ulm Netze GmbH durchzuführen. Die benötigten hochzuladenden Unterlagen werden im Portal angezeigt.

Link: Netzanschlussportal

Notwendige Unterlagen für die Genehmigung einer Mittelspannungsanlage/Trafostation:

In Anhang 1 ist ein Prozessablaufdiagramm dargestellt, in dem die einzelnen Schritte definiert sind. Die technischen Unterlagen inkl. der Stromlaufpläne (Primär- und Sekundärtechnik) der 10/20-kV-Anlage müssen der SWUN rechtzeitig im Vorfeld zur Freigabe übergeben werden, um eventuelle Änderungen und Auflagen seitens der SWUN berücksichtigen zu können. Mit dem Bau und der Montagearbeiten darf erst begonnen werden, wenn diese mit dem Sichtvermerk der SWUN versehenen beim Anschlussnehmer oder dessen Planer vorliegen.

Weiter befindet sich in Anhang 2 eine verbindliche Checkliste über die für eine Inbetriebsetzung der Anlage notwendigen Unterlagen. Diese sind unter Wahrung der Fristen in Anhang 3 an die SWUN zu übergeben. Die Unterlagen umfassen zu diesem Zeitpunkt jegliche im Vorfeld abgestimmte Auflagen seitens der SWUN und sind als aktualisierte Dokumentation der Anlage zu betrachten.

4.2.2 - 4.2.4

Keine Ergänzungen

Zu 4.2.5 Vorbereitung der Inbetriebsetzung der Übergabestation

Es sind die Fristen von Anhang 3 zu wahren. Gleichfalls müssen vor der Inbetriebsetzung alle notwendigen Unterlagen vollständig beim Netzbetreiber eingegangen sein (siehe Anhang 2). Erst nach erfolgreicher Abnahme ist ein verbindlicher Termin zur Inbetriebsetzung zwischen Anschlussnehmer und SWUN zu vereinbaren. Der Kunde übergibt alle Unterlagen gemäß Anhang 2 an die SWUN.

Zu 4.3 Inbetriebnahme des Netzanschlusses/Inbetriebsetzung der Übergabestation

Die Inbetriebnahme des Netzanschlusses und die Inbetriebsetzung der Anlage (= Zuschaltung Ringkabelfelder) erfolgen aus Gründen der Netzführung grundsätzlich in einem gemeinsamen Schritt. Daher erfolgt die endgültige mittelspannungsseitige Anbindung der Station (Montage der Muffen und Endverschlüsse durch SWUN) und die Inbetriebnahme des Netzanschlusses erst nach der mängelfreien Abnahme der fertigen Station. Die Inbetriebsetzung kann frühestens zwei Wochen nach mängelfreier Abnahme durch die SWUN erfolgen. Der SWUN müssen die Unterlagen gem. Anhang 2 vollständig ausgehändigt werden.

Eine Inbetriebsetzung darf ausschließlich im Beisein der SWUN erfolgen, eine Sichtkontrolle über alle relevanten Komponenten sowie Schutzfunktionsprüfung sind zudem währenddessen ausdrücklich vorbehalten. Bei Mängeln, welche den Netzbetrieb beeinträchtigen, können die SWUN die Inbetriebsetzung bis zur Behebung des Mangels untersagen.

Die Inbetriebsetzung der Anlage kann auch in zwei zeitlich getrennten Schritten erfolgen:

- Spannungsvorgabe und Zuschaltung Ringkabelfelder durch SWUN
- Zuschaltung Übergabeschalter im Beisein der SWUN

Die Mittelspannungskabel müssen bis zur Spannungsvorgabe eingesandet und die Erdungsanlage betriebsbereit verfüllt sein. Zudem müssen die Eingangs- und Arbeitsbereiche so angefüllt sein, dass ein sicheres Bedienen und Arbeiten möglich ist. Bei notwendigen Umschwenkarbeiten von Niederspannungskabeln ist der genaue Ablauf individuell mit der SWUN abzustimmen.

Zu 4.4 Inbetriebsetzung der Erzeugungsanlage

Keine Ergänzungen

Zu 5 Netzanschluss

Zu 5.1 Grundsätze für die Ermittlung des Netzanschlusspunktes

Der Netzanschluss von Kundenanlagen erfolgt standardmäßig über eine Einschleifung (2 Ringkabelfelder 1x zugehend, 1x abgehend). Die Entnahme bzw. Einspeisung elektrischer Energie erfolgt in unterschiedlichen Spannungsebenen über einen Netzanschluss, der die Kundenanlage mit dem Netz der SWUN verbindet. Die Anschlussebene wird dabei entsprechend dem Leistungsbedarf und den technischen Randbedingungen festgelegt. Grundsätzlich gelten die in der Tabelle 5.1 aufgeführten Netzanschlusskapazitäten (für Bezugs- und Erzeugungsanlagen) als Orientierungswerte für die maximale Leistung mit der ein Einzelanschluss in der genannten Ebene angeschlossen wird. Technische Gegebenheiten können dabei im Einzelfall zu anderen Werten führen.

Spannungsebene	Anschlussleistung einzelner Kundenanlagen
Anschluss an ein 10-kV-Netz	250 kVA bis 1 MVA
Anschluss an eine 10-kV-Sammelschiene	≥ 1 MVA
Anschluss an ein 20-kV-Netz	250 kVA bis 2 MVA
Anschluss an eine 20-kV-Sammelschiene	≥ ab 2 MVA

Tabelle 5.1: Anschlussleistungen einzelner Kundenanlagen in Abhängigkeit der Spannungsebene

Zu 5.2 - 5.4.6

Keine Ergänzungen

Zu 5.4.7 Tonfrequenz-Rundsteuerung

Die verwendeten Rundsteuerfrequenzen im Netzgebiet der SWUN betragen 425 Hz (10 kV Netz) und 175 Hz (20 kV Netz).

Zu 5.4.8 - 5.5

Keine Ergänzungen

Zu 6 Übergabestation

Zu 6.1 Baulicher Teil

Zu 6.1.1 Allgemeines

Die Übergabestation wird vom Kunden errichtet, nachdem eine Abstimmung mit SWUN erfolgt ist. Mit der Errichtung dürfen nur Fachfirmen beauftragt werden. Die Verantwortung für die fachgerechte Planung und Ausführung des baulichen Teils der Station (z.B. Druckentlastungseinrichtungen, Ölauffangwanne, Erdungsanlage) liegt ausschließlich beim Anschlussnehmer bzw. dessen Auftragnehmern.

Ein ungehinderter Zugang ist jederzeit zu gewährleisten, um einen ungestörten Netzbetrieb und eine schnelle Störungsbeseitigung sicherzustellen. Der Zugang zur Station soll nach Möglichkeit vom öffentlichen Grund aus erfolgen.

Zugelassen sind ausschließlich fabrikfertige Stationen, entweder in begehbarer oder Kompaktbauweise. Gleichfalls hat die Errichtung im Erdgeschoss zu erfolgen. Sollen Übergabestationen in vorhandene Gebäude integriert werden, so ist eine ebenerdige Erstellung an den Außenwänden zu berücksichtigen. Für alle erlaubten Arten ist ein Nachweis bzgl. Störlichtbogenfestigkeit zu erbringen. Letztbenannte Einbaustationen sind nur in Abstimmung mit der SWUN zulässig, wenn keine andere Option besteht.

Der Schutz gegen das Eindringen von Regenwasser, Grundwasser, Fremdkörpern (Stochersicherheit) und Insekten muss gegeben sein.

Vor der Bedienfront der 10/20-kV-Schaltanlage ist eine Rückenfreiheit von mindestens 80 cm bei gasisolierten und mindestens 120 cm bei luftisolierten einzuhalten. Bei nicht typgeprüften Gebäuden muss eine Druckberechnung für den Störlichtbogenfall erfolgen. Ein statischer Nachweis über die Standhaltung der Druckbelastung ist sicherzustellen. Der Überdruck muss über dafür vorgesehene Öffnungen nach außen geführt werden, die sich min. 2 m über der Geländeoberkante befinden.

Zu 6.1.2 Einzelheiten zur baulichen Ausführung

Zu 6.1.2.1 Allgemeines

Keine Ergänzungen

Zu 6.1.2.2 Zugang und Türen

Es ist jederzeit ein ungehinderter Zugang zu der Station zu garantieren. Schaltberechtigtes Personal des Kunden ist bei der SWUN anzuzeigen. In sämtlichen Zugangstüren, die Kundenteile betreffen, ist eine mechanische Doppelschließung vorzusehen, von denen ein Zylinderplatz der SWUN zur Verfügung gestellt werden muss.

Für die Anlagenteile, die ausschließlich im Eigentum der SWUN stehen, ist eine Einfachschließung vorzusehen. Die Anforderungen an den Schließzylinder gelten analog zum vorherigen Abschnitt. Zugang haben hier nur die SWUN, weswegen auch lediglich diese über Schlüssel verfügen dürfen.

Alle Türen sind gemäß DIN EN 61936-1 (VDE 0101-1) zu errichten. Bei begehbaren Trafostationen sind die Türen mit einem Panikverschluss auszustatten. Die Türen müssen mit einem Winkel von mindestens 90° nach außen aufschlagen und mit einem Türfeststeller ausgerüstet sein.

Zu 6.1.2.3 Fenster

Es ist zwingend ein fensterloser Aufbau vorzusehen.

Zu 6.1.2.4 Klimabeanspruchung, Belüftung und Druckentlastung

Als Standard ist eine natürliche Belüftung anzustreben. Bei hohem Verschmutzungsrisiko (z.B. Staub) sind geeignete Gegenmaßnahmen zu treffen. In Trafostationsräumen, in denen Schutz- und Messrelais untergebracht sind, darf die Raumtemperatur nicht unter + 5° C absinken. Im Vorfeld der Errichtung hat eine Berechnung der Druckverhältnisse zu erfolgen, damit die baulich richtigen Maßnahmen eingeplant werden können.

Zu 6.1.2.5 Fußböden

Die Bodenplatten sind so zu verlegen, dass sie auch bei geschlossenen Schaltfeldtüren bzw. - abdeckungen herausgenommen werden können. Bei der Doppelbodengestaltung ist außerdem darauf zu achten, dass die Tragkonstruktion des Zwischenbodens einschließlich der Stützen mit dem Baukörper verschraubt wird.

Tragkonstruktion / Unterkonstruktion des Zwischenbodens einschließlich der Stützen müssen geerdet sein.

Kabeleinführungen und Mittelspannungs-Endverschlüsse müssen frei zugänglich sein. Erfolgt die Druckentlastung der Schaltanlage im Kabelkeller so ist dort eine ausreichend dimensionierte Entlastungsöffnung, z. B. in einen benachbarten Transformatorenraum, sicherzustellen. Die Fußboden-Mindesthöhe beträgt 80cm. Ein Doppelboden muss immer verschraubt sein.

Zu 6.1.2.6 Schallschutzmaßnahmen und Auffangwannen

Keine Ergänzungen

Zu 6.1.2.7 Trassenführung der Netzanschlusskabel

Zur Kabeleinführung in Gebäude werden im Bereich der SWUN Systemdichtungen der Fa. Hauff vom Typ HSI 150 verwendet. Die genaue Anzahl an Durchführungen ist projektabhängig und mit der SWUN abzustimmen.

Zu 6.1.2.8 - 6.1.3.2

Keine Ergänzungen

Zu 6.2 Elektrischer Teil

Zu 6.2.1 Allgemeines

Zu 6.2.1.1 Allgemeine technische Daten

Folgende Kennwerte sind für die Dimensionierung der Übergabestation (alle Felder) zu berücksichtigen:

Im Netzgebiet der SWUN werden 10 und 20 kV Netze betrieben. Die Art der Sternpunktbehandlung und der Bemessungskurzzeitstrom werden vom zuständigen Ansprechpartner der SWUN mitgeteilt.

Anschluss an 10-kV-Netze	
Nennspannung	U _n = 10 kV
Nennfrequenz	F _n = 50 Hz
Isolationsspannung	U _m = 12 kV
Bemessungsspannung	10 kV
Thermischer Kurzschlussstrom	I_{th} = 20 kA bei T_K =1 s
Bemessungsstoßstrom	I _p = 50 kA
Bemessungs- Stehblitzstoßspannung	125 kV

Tabelle A 6.2.1.1: Anschluss an 10-kV-Netze

Anschluss an 20-kV-Netze	
Nennspannung	U _n = 20 kV
Nennfrequenz	F _n = 50 Hz
Isolationsspannung	U _m = 24 kV
Bemessungsspannung	20 kV
Thermischer Kurzschlussstrom	I _{th} = 20 kA bei T _K =1 s
Bemessungsstoßstrom	I _p = 40 kA
Bemessungs- Stehblitzstoßspannung	125 kV

Tabelle B 6.2.1.1: Anschluss an 20-kV-Netze

In den Übersichtsschaltbildern sind ferner die geltenden Eigentumsgrenzen ebenfalls eingezeichnet. Diese stellen den Standard der SWUN dar. Anschlussvarianten sind einerseits im Anhang.4 sowie im Anhang D der VDE-AR-N 4110 gegeben. Wesentlich zu beachten ist, dass im Falle von mehreren Übergabefeldern (gewünschte erhöhte Versorgungssicherheit) zwingenderweise auch die entsprechende Anzahl an Messfeldern berücksichtigt werden muss. Jede Übergabe ist separat zu messen.

Zu 6.2.1.2 Kurzschlussfestigkeit

Sämtliche mittelspannungsseitige Betriebsmittel der Übergabestation sind so zu dimensionieren, dass sie der jeweiligen Kurzschlussbeanspruchung (thermisch und dynamisch) an der Anschlussstelle entsprechen, siehe 6.2.1.1.

In Einzelfällen kann die SWUN vom Anschlussnehmer Einrichtungen zur Begrenzung des von der Kundenanlage in das SWUN-Netz eingespeisten Anfangskurzschlusswechselstromes verlangen, um Betriebsmittel zu schützen bzw. Schutzfunktionen im Netz zu gewährleisten. Der Anschlussnehmer trägt die Kosten der dadurch in seiner Anlage entstehenden Maßnahmen.

Zu 6.2.1.3 Schutz gegen Störlichtbogen

Folgende Prüfwerte sind einzuhalten:

- Wandaufstellung: IAC AB FL (Kurzschlussstrom siehe Abschnitt 6.2.1.1)
- Freie Aufstellung: IAC AB FRL (Kurzschlussstrom siehe Abschnitt 6.2.1.1)

Zu 6.2.1.4 Isolation

Keine Ergänzungen

Zu 6.2.2 Schaltanlagen

Zu 6.2.2.1 Schaltung und Aufbau

Grundsätzlich sind die Schaltfelder der Übergabestationen in folgender Reihenfolge von links nach rechts vorzusehen:

- Ringkabelfelder Einspeisung f
 ür den Anschluss an das Netz der SWUN
- Übergabe- und Messfeld
- Abgangsfelder

Für die Abgangsfelder die im Verfügungsbereich des Kunden stehen (Bezugs- und Erzeugungsanlagen), ist ein Übergabeschalter vorzusehen. Die Art des Übergabeschalters ist abhängig von der Scheinleistung der an die Übergabestation angeschlossenen Transformatoren.

Es gilt:

- Bemessungsleistung < 1 MVA Absicherung über Lasttrennschalter mit untergebauten Hochspannungssicherungen
- Bemessungsleistung ≥ 1 MVA Absicherung über Leistungsschalter mit unabhängigem Maximalstromzeitschutz (UMZ). Das Schutzkonzept ist im Vorfeld mit der SWUN abzustimmen. In jedem Fall muss sichergestellt werden, dass die gewählte Schutzeinrichtung im Fehlerfall den betroffenen Kundennetzteil oder die gesamte Kundenanlage automatisch und selektiv zu vorhandenen Schutzeinrichtungen der SWUN, abschaltet.
- Leistungsschalter bei mehr als einem mittelspannungsseitigen Abgangsfeld (z.B. zwei oder mehr Trafos)
- Die Stromwandler für den Übergabeschutz müssen im Übergabefeld installiert sein

Zu 6.2.2.2 Ausführung

Aus Gründen des Netzbetriebes (Bediensicherheit und Störungsbeseitigung) können für die Ringkabelfelder und die Übergabe einschließlich Messfeld nur folgende Schaltanlagentypen verwendet werden:

- Siemens 8DJH 24 ("Blue GIS")
- Driescher MINEX ABSzero
- ABB SafeRing Air/SafePlus Air
- Ormazabal cgm.zero24
- Driescher LDTM

Für die Schalterverriegelung (EIN / AUS / ERDUNG) der MS-Kabelfelder, welche durch die SWU-N bedient werden (Schalthoheit), werden entweder Halbzylinder oder Vorhängeschlösser mit einer Bügelstärke von 10 mm verwendet. Es muss sichergestellt sein, dass hierbei eine Kompatibilität mit der ausgewählten MS-Schaltanlage besteht.

Folgendes Anforderungsprofil ist für die Ausführung zu berücksichtigen:

Durchführen eines Phasenvergleiches und Feststellen der Spannungsfreiheit:

- Allpoliges, kapazitives Spannungsprüfsystem mit dem Messprinzip LRM (gemäß DIN EN 61243-5 (VDE 0682 Teil 415)) ist in allen Schaltfeldern zu verwenden.
- Der Schnittstellenanschluss erfolgt über isolierte Messbuchsen.

Freigegebene Fabrikate sind:

- FA. Horstmann WEGA 1
- FA. Horstmann WEGA 1.2 C

Geräte zur Kabelfehlerortung:

 Anschlussmöglichkeit für Geräte zur Kabelfehlerortung/Kabelprüfung ohne Lösen von Endverschlüssen bzw. Steckendverschlüssen muss gegeben sein.

Kurzschlussanzeiger:

- Die Ringkabelfelder sind standardmäßig mit folgenden Kurzschlussanzeigern auszurüsten.
 - Fa. Horstmann ComPass B 2.0, die externe Hilfsspannungsversorgung (24 V (-29 %) bis 230 V (+10 %) AC/DC) ist kundenseitig bereitzustellen. Bei einer fernwirktechnischen Übertragung zur Leitstelle der SWU-N ist die Hilfsspannung in 24 V/DC mit mindestens einer 15-minütigen Pufferung kundenseitig vorzusehen.

Bei bestimmten Anlagenkonstellationen kann ein anderer Kurzschlussanzeiger gefordert werden. Verriegelungen:

• Für die unter Schalthoheit der SWUN stehenden Schaltfelder sind Maßnahmen gegen unbefugtes Betätigen von Schaltern (abschließbare Ausführung) und Öffnen der Türen zu berücksichtigen.

Zu 6.2.2.3 - 6.2.2.5

Keine Ergänzungen

Zu 6.2.2.6 Transformatoren

Die Niederspannungskabel von Trafo zu NSHV sind so zu verlegen, dass die Anwendung einer Messzange an einer Stelle im Trafostationsraum sicher und platztechnisch möglich ist.

Zu 6.2.2.7 Wandler

Die Stromwandler für die Kurzschlussschutzeinrichtung des Anschlussnehmers müssen im Übergabefeld installiert werden.

Zu 6.2.2.8 Überspannungsableiter

Keine Ergänzungen

Zu 6.2.3 Sternpunktbehandlung

- 10kV Netz → niederohming
- 20kV Netz → gelöschtes Netz

Zu 6.2.4 Erdungsanlage

Der Ausbreitungswiderstand RA der Erdungsanlage darf 2 Ω nicht überschreiten. Bei Inbetriebnahme der Übergabestation muss der SWUN ein Messprotokoll inkl. genauer Lage (Skizze der Erdungsanlage mit Bemaßung) überbracht werden. Es ist sicherzustellen, dass die zulässigen Berührungsspannungen nach DIN EN 50522 (VDE 0101-2) eingehalten werden.

Der Nachweis ist der SWUN zu übergeben. Abweichende Werte sind mit der SWUN abzustimmen. Bezüglich der Höhe der Erdungsimpedanz, hinsichtlich der Anforderungen des Niederspannungsnetzes des Anschlussnehmers bzw. Anschlussnutzers, ist der Anschlussnehmer verantwortlich. Es ist sicherzustellen, dass die zulässigen Berührungsspannungen nach DIN EN 50522 (VDE 0101-2) eingehalten werden.

Die Potentialausgleichsschiene ist grundsätzlich mit einer Erdungstrennklemme auszustatten.

Zu 6.3 Sekundärtechnik

Zu 6.3.1 Allgemeines

Keine Ergänzungen

Zu 6.3.2 Fernwirk- und Prozessdatenübertragung an die netzführende Stelle

Für den sicheren Netzbetrieb ist die Kundenanlage auf Anforderung der SWUN fernwirktechnisch an das Netzleitsystem der SWUN anzubinden. Vom Anschlussnehmer sind die für die Betriebsführung notwendigen Daten und Informationen (zur Verarbeitung in der Leittechnik der SWUN) bereitzustellen. Der gültige Signalumfang für die Übergabestation ist der Datenpunktliste in aktueller Fassung zu entnehmen. Nach Vorgabe der SWUN sind die Daten der Kundenanlage bei fernwirktechnischer Anbindung via Protokoll zur Verfügung zu stellen. Handelt es sich bei der Kundenanlage auch um eine Erzeugungsanlage, so sind zusätzlich die Vorgaben mit EZA-Regler zu berücksichtigen.

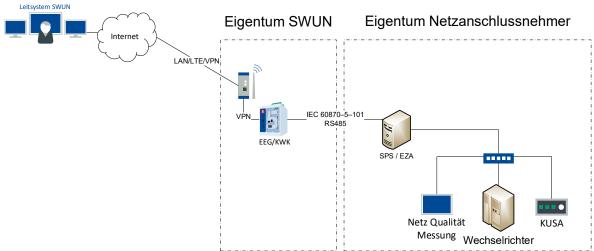


Bild A 6.3.2: Fernwirk- und Prozessdatenübertragung an die netzführende Stelle

Die Fernwirkanbindung an das Netzleitsystem der SWUN erfolgt folgende über das IEC-Protokoll:

- Richtung SWUN-Netzleitsystem: IEC 60870-5-104
- Richtung Anlage des Anschlussnehmers: IEC 60870-5-101

Eigentumsabgrenzung, Verfügungsbereiche:

Die Klemmleiste der Spannungsversorgung und der Anschluss der seriellen Schnittstelle auf der Schrankunterseite bilden die Eigentumsgrenze. Die Anlage (Fernwirktechnische-Anlage) liegt im unterhaltspflichtigen Eigentum des Anschlussnehmers. Die Betreiber- und Anlagenverantwortung bei der SWUN. Der Protokollumsetzer inklusive aller Zusatzkomponenten und den Anschlussbereichen liegen im Verfügungsbereich der SWUN.

Schnittstelle Richtung Kundenanlage:

Die Kommunikation zwischen der Kundenanlage und dem Leitsystem der SWUN erfolgt ausschließlich über den Protokollumsetzer. Die Fernwirktechnik des Anschlussnehmers ist über eine serielle Schnittstelle mit dem Protokoll IEC 60870-5-101 an den Protokollumsetzer anzubinden. Die Beschreibung (Adressierung) der einzelnen Datenpunkte ist der Datenpunktliste zu entnehmen.

Funktionsprüfung und Inbetriebnahme:

Funktionsprüfung und Inbetriebnahme des Protokollumsetzers werden gemeinsam von der SWUN und Anschlussnehmer durchgeführt. Der Anschlussnehmer hat während der gesamten Prüfung und Inbetriebnahme anwesend zu sein und diese zu unterstützen. Vorab hat der Anschlussnehmer die Funktion seines Fernwirkgerätes und des dahinterliegenden Prozesses bis zur RS485 Schnittstelle sicherzustellen und zu dokumentieren. Die Funktionsprüfung und Inbetriebnahme durch die SWUN wird nur vorgenommen, wenn die Vorprüfung durch den Anschlussnehmer vollständig und erfolgreich durchgeführt sowie dokumentiert wurde.

Installationshinweise:

Die Einrichtungen der Sekundärtechnik müssen im Innenraum der Trafostation auf Bedienhöhe angebracht werden und sind so zu platzieren, dass Arbeiten an diesen ohne Freischalten der Mittelspannungsfelder jederzeit möglich sind.

Mindestschrankmaße Fernwirktechnik:

- Schrankmaße: Höhe Breite Tiefe
- Protokollumsetzer 600 mm 400 mm 200 mm

Der Anschlussnehmer ist für die mechanische Befestigung und den elektrischen Anschluss des Schrankes verantwortlich. Dabei ist die beiliegende "Montageanweisung Fernwirktechnische-Anlage zu beachten. In der Kundenanlage ist der Protokollumsetzer selektiv abzusichern. Über diese Sicherung dürfen keine weiteren Anlagenteile des Anschlussnehmers versorgt werden. Der Wandschrank ist in die Erdungseinrichtung der Übergabestation zu integrieren.

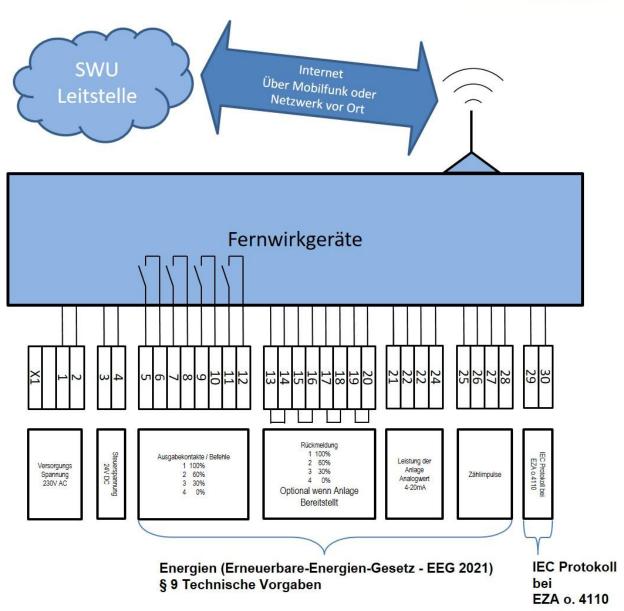


Bild B 6.3.2: Fernwirk- und Prozessdatenübertragung an die netzführende Stelle

Kommunikationstechnik:

Die Datenübertragung zum Leitsystem erfolgt vorrangig über Mobilfunk. Kann aber auch über einen LAN Port mit einem freien Internet Zugang zur Verfügung gestellt werden, an diesem Port sollte ein DHCP Server aktiv sein. Sämtliche Komponenten werden durch die SWUN beigestellt. Der Anschlussnehmer muss die Antenne, gemäß Montageanleitung, an einer geeigneten Stelle außen an der Übergabestation anbringen. Der Anschlussnehmer muss für das Antennenkabel eine Durchführung in die Station vorsehen. Das Antennenkabel muss vom Anschlussnehmer zwischen dem Protokollumsetzer-Schrank und der Antenne mechanisch geschützt verlegt werden und ist durch die entsprechende beschriftete Durchführung in den Schrank einzuführen.

Übertragbare Parameter IEC 101 für 4110:

Protokoll: IEC 60870-5-101 Unterstation:

Schnittstelle: RS-485 Bits pro Zeichen: 8 Bits

Stoppbit: 1 Bit Parität: gerade

Baudrate: 38400(normal)

Übertragung Prozedur: Unsymmetrisch

Einzelzeichen: Nein Ende der Aktivierung: Ja

Kommunikationsneustart melden: Nein Uhrzeitsynchronisation bestätigen: Ja Zeichen zu Zeichen Timeout 50 Maximale Telegrammlänge 250

Common Adresse:

Größe: 1 ByteStruktur: 8 BitInfomationsobjektadresse:

Größe: 3 ByteStruktur : 24 Bit

Übertragungsursache

Größe: 1 Byte
Struktur: 8 Bit
Linkadresse: 11
Common Adresse: 11

Datenpunktliste für Bezugsanlagen, dies ist die Basisanforderung

ASDU	IOA	Kategorie	Тур		тк	Ein	Aus	Kommentar
		Meldungen						
11	10101	Rückmeldung Schaltgerät Ringkabelfeld 1	Binär	M_DP_TB_1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10102	Rückmeldung Erdungsschalter Ringkabelfeld 1	Binär	M_DP_TB_1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10103	Rückmeldung Schaltgerät Ringkabelfeld 2	Binär	M_DP_TB_1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10104	Rückmeldung Erdungsschalter Ringkabelfeld 2	Binär	M_DP_TB_1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10105	Rückmeldung Schaltgerät Ringkabelfeld 3	Binär	M_DP_TB_1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10106	Rückmeldung Erdungsschalter Ringkabelfeld 3	Binär	M DP TB 1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10107	Rückmeldung Schaltgerät Ringkabelfeld 4	Binär	M DP TB 1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10108	Rückmeldung Erdungsschalter Ringkabelfeld 4	Binär	M DP TB 1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10109	Rückmeldung Übergabeschalter 1	Binär	M_DP_TB_1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10110	Rückmeldung Übergabeschalter 2	Binär	M_DP_TB_1	Doppelmeldung mit Zeitmarke CP56Time2a	1	0	
11	10111	Kurzschlussanzeiger Ringkabelfeld 1 Fehler Richtung Leitung	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	

					_			
					Einzelmeldung mit			
44	40440	Kurzschlussanzeiger Ringkabelfeld 1	D: #	M CD TD 4	Zeitmarke		_	
11	10112	Fehler Richtung Sammelschiene	Binär	M_SP_TB_1	CP56Time2a	1	0	
		Kurzschlussanzeiger Ringkabelfeld 2			Einzelmeldung mit Zeitmarke			
11	10113	Fehler Richtung Leitung	Binär	M SP TB 1	CP56Time2a	1	0	
- ' '	10110	Terrior reoritaring Editaring	Diriai	IW_OI _IB_I	Einzelmeldung mit			
		Kurzschlussanzeiger Ringkabelfeld 2			Zeitmarke			
11	10114	Fehler Richtung Sammelschiene	Binär	M SP TB 1	CP56Time2a	1	0	
		· ·			Einzelmeldung mit			
		Kurzschlussanzeiger Ringkabelfeld 3			Zeitmarke			
11	10115	Fehler Richtung Leitung	Binär	M_SP_TB_1	CP56Time2a	1	0	
					Einzelmeldung mit			
		Kurzschlussanzeiger Ringkabelfeld 3		l	Zeitmarke		_	
11	10116	Fehler Richtung Sammelschiene	Binär	M_SP_TB_1	CP56Time2a	1	0	
		Kumaahkuaaamainan Dinakahakalal 4			Einzelmeldung mit			
11	10117	Kurzschlussanzeiger Ringkabelfeld 4 Fehler Richtung Leitung	Binär	M CD TD 1	Zeitmarke CP56Time2a	1	0	
11	10117	Ferlier Richtung Leitung	Dillai	M_SP_TB_1	Einzelmeldung mit	'	U	
		Kurzschlussanzeiger Ringkabelfeld 4			Zeitmarke			
11	10118	Fehler Richtung Sammelschiene	Binär	M_SP_TB_1	CP56Time2a	1	0	
		J =			Einzelmeldung mit			
		Kurzschlussanzeiger Ringkabelfeld 1			Zeitmarke			Nur in 20kV
11	10161	Pulsortung	Binär	M_SP_TB_1	CP56Time2a	1	0	Netzen
					Einzelmeldung mit			
		Kurzschlussanzeiger Ringkabelfeld 2			Zeitmarke			Nur in 20kV
11	10162	Pulsortung	Binär	M_SP_TB_1	CP56Time2a	1	0	Netzen
					Einzelmeldung mit			
	40.400	Kurzschlussanzeiger Ringkabelfeld 3	Di. v	M OD TO 4	Zeitmarke			Nur in 20kV
11	10163	Pulsortung	Binär	M_SP_TB_1	CP56Time2a	1	0	Netzen
		Kurzechluseonzoiger Dingkahalfald 4			Einzelmeldung mit Zeitmarke			Nur in 20kV
11	10164	Kurzschlussanzeiger Ringkabelfeld 4 Pulsortung	Binär	M SP TB 1	CP56Time2a	1	0	Nur in Zukv Netzen
- 11	10 104	i disortang	Diriai	IVI_OI _ I D_ I	Einzelmeldung mit	-	U	NOLEGII
					Zeitmarke			Wenn
11	10165	Schaltanlage Gasdruck Warnung	Binär	M SP TB 1	CP56Time2a	1	0	Vorhaden
		J -			Einzelmeldung mit			
					Zeitmarke			Wenn
11	10166	Störung Hilfsenergieversorgung	Binär	M_SP_TB_1	CP56Time2a	1	0	Vorhaden
					Einzelmeldung mit			
					Zeitmarke			Wenn
11	10167	Selbstüberwachung Kurzschlussschutz	Binär	M_SP_TB_1	CP56Time2a	1	0	Vorhaden
					Einzelmeldung mit			14/
11	10160	Sabutzanragung Kurzaahluaaaahutz	Dinör	M CD TD 1	Zeitmarke CP56Time2a	4	0	Wenn
11	10168	Schutzanregung Kurzschlussschutz	Binär	M_SP_TB_1	Einzelmeldung mit	1	U	Vorhaden
					Zeitmarke			Wenn
11	10169	Schutzauslösung Kurzschlussschutz	Binär	M SP TB 1	CP56Time2a	1	0	Vorhaden
	10100	Steuerbefehle	Billial	M_OI _IB_I	01 00 111102a		•	Vorridaeri
		Oteder Deferries			Dennelhefalatasit			
					Doppelbefehl mit Zeitmarke			Wenn
11	10121	Ansteuerung Schaltgerät Ringkabelfeld 1	Binär	C DC TA 1	CP56Time2a	1	0	Vorhaden
	10121	g conditional fundamental f	iai	3_2 0_1/(_1	Doppelbefehl mit		Ť	, J
					Zeitmarke			Wenn
11	10122	Ansteuerung Schaltgerät Ringkabelfeld 2	Binär	C_DC_TA_1	CP56Time2a	1	0	Vorhaden
					Doppelbefehl mit			
					Zeitmarke			Wenn
11	10123	Ansteuerung Schaltgerät Ringkabelfeld 3	Binär	C_DC_TA_1	CP56Time2a	1	0	Vorhaden
					Doppelbefehl mit			
4.4	40404	Anatonian Calculation at Division Late 15	Dim V	0 D0 T1 1	Zeitmarke			Wenn
11	10124	Ansteuerung Schaltgerät Ringkabelfeld 4	Binär	C_DC_TA_1	CP56Time2a	1	0	Vorhaden
		Poset Kurzschlussenzeiger Dingkahelf-14			Einzelbefehl mit Zeitmarke			
11	10125	Reset Kurzschlussanzeiger Ringkabelfeld 1	Binär	C_SC_TA_1	CP56Time2a	1	0	
- ' '	10123		Diriai	0_00_1A_1	Einzelbefehl mit		-	
		Reset Kurzschlussanzeiger Ringkabelfeld			Zeitmarke			
11	10126	2	Binär	C SC TA 1	CP56Time2a	1	0	
	3				Einzelbefehl			
		Reset Kurzschlussanzeiger Ringkabelfeld			miZeitmarke			
11	10127	3	Binär	C_SC_TA_1	CP56Time2a	1	0	
					Einzelbefehl mit			
		Reset Kurzschlussanzeiger Ringkabelfeld	D: "	0.00	Zeitmarke			
11	10128	4	Binär	C_SC_TA_1	CP56Time2a	1	0	

		Messwerte					
11	10131	Strom IL2 in A Ringkabelfeld 1	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10132	Strom IL2 in A Ringkabelfeld 2	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10133	Strom IL2 in A Ringkabelfeld 3	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10134	Strom IL2 in A Ringkabelfeld 4	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10135	Spannung UL12 in kV Ringkabelfeld 1	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10136	Spannung UL12 in kV Ringkabelfeld 2	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10137	Spannung UL12 in kV Ringkabelfeld 3	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10138	Spannung UL12 in kV Ringkabelfeld 4	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10139	Wirkleistung P in MW Ringkabelfeld 1	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10140	Wirkleistung P in MW Ringkabelfeld 2	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10141	Wirkleistung P in MW Ringkabelfeld 3	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10142	Wirkleistung P in MW Ringkabelfeld 4	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10143	Blindleistung Q in MVar Ringkabelfeld 1	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10144	Blindleistung Q in MVar Ringkabelfeld 2	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11	10145	Blindleistung Q in MVar Ringkabelfeld 3	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		
11		Blindleistung Q in MVar Ringkabelfeld 4	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke		

Tabelle A 6.3.2: Datenpunktliste für Bezugsanlagen

Datenpunktliste für Erzeugungsanlagen und Mischanlagen mit EZA Regler

ASDU	IOA	Kategorie	Тур		тк	Ein	Aus	Kommenta r
		Meldungen						
11	11100	Erzeugungsanlage aktiv	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	
11	11101	Einspeisung 100%	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	
11	11102	Einspeisung 60%	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	
11	11103	Einspeisung 30%	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	
11	11104	Einspeisung 0%	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	
11	11109	Lokale Q-U-Regelung-Meldung	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	

					Einzelmeldung mit Zeitmarke			wenn
11	11121	Schutzanregung überg.Entkupplungsschutz	Binär	M_SP_TB_1	CP56Time2a	1	0	Vorhanden
11	11122	Schutzauslösung überg Entkupplungsschutz	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	
11	11123	Schutzauslösung Entkupplungsschutz an EZA	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	
11	11124	Selbstüberwachung übergeordneter Entkupplungsschutz	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	
11	11125	Ausfall der Fernwirk Verbindung zum Leitsystem der SWUN	Binär	M_SP_TB_1	Einzelmeldung mit Zeitmarke CP56Time2a	1	0	Siehe E9 Bogen
		Steuerbefehle						
					Einzelbefehl mit Zeitmarke			
11	11201	Einspeisung 100%	Binär	C_SC_TA_1	CP56Time2a Einzelbefehl mit	1	0	
11	11202	Einspeisung 60%	Binär	C SC TA 1	Zeitmarke CP56Time2a	1	0	
	11202	Emopoleum 90070	Biriai	0_00_171_1	Einzelbefehl mit Zeitmarke			
11	11203	Einspeisung 30%	Binär	C_SC_TA_1	CP56Time2a	1	0	
					Einzelbefehl mit Zeitmarke			
11	11204	Einspeisung 0%	Binär	C_SC_TA_1	CP56Time2a Einzelbefehl mit	1	0	
					Zeitmarke			
11	11209	Lokale Q-U-Regelung	Binär	C_SC_TA_1	CP56Time2a	1	0	
		Messwerte			Messwert.			
11	11301	Spannung UL12 am Übergabepunkt 1 in kV	Analog	M ME TF 1	Gleitkommazahl mit Zeitmarke			
11	11302	Spannung UL23 am Übergabepunkt 1 in kV	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11303	Spannung UL31 am Übergabepunkt 1 in kV	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11304	Strom IL1 am Übergabepunkt 1 in A	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11305	Strom IL2 am Übergabepunkt 1 in A	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11306	Strom IL3 am Übergabepunkt 1 in A	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11307	Scheinleistung am Übergabepunkt 1 in MVar	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke			
					Messwert, Gleitkommazahl mit			
11	11308	Wirkleistung am Übergabepunkt 1 in MW	Analog	M_ME_TF_1	Zeitmarke			Blindleistun g am
11	11309	Blindleistung am Übergabepunkt 1 in MVA	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke	11	1130 9	Übergabep unkt 1 in MVA
11	11321	cos Phi am Übergabepunkt 1	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke	11	1132 1	cos Phi am Übergabep unkt 1
11	11311	Spannung UL12 am Übergabepunkt 2 in kV	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke	11	1131	Spannung UL12 am Übergabep unkt 2 in kV
11	11312	Spannung UL23 am Übergabepunkt 2 in kV	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke	11	1131	Spannung UL23 am Übergabep unkt 2 in kV

11	11313	Spannung UL31 am Übergabepunkt 2 in kV	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke	11	1131	Spannung UL31 am Übergabep unkt 2 in kV
11	11314	Strom IL1 am Übergabepunkt 2 in A	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke	11	1131 4	Strom IL1 am Übergabep unkt 2 in A
11	11315	Strom IL2 am Übergabepunkt 2 in A	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke	11	1131 5	Strom IL2 am Übergabep unkt 2 in A
11	11316	Strom IL3 am Übergabepunkt 2 in A	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke	11	1131 6	Strom IL3 am Übergabep unkt 2 in A
11	11317	Scheinleistung am Übergabepunkt 2 in MVar	Analog	M ME TF 1	Messwert, Gleitkommazahl mit Zeitmarke	11	1131 7	Scheinleist ung am Übergabep unkt 2 in MVar
11	11318	Wirkleistung am Übergabepunkt 2 in MW	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11319	Blindleistung am Übergabepunkt 2 in MVA	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11320	cos Phi am Übergabepunkt 2	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11322	Ladezustand Speicher in %	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke	0	100	Wenn Vorhanden
11	11323	Rückmeldung Vorgabe cos Phi	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke	-1	1	Siehe E.9- Bogen
11	11324	Rückmeldung Vorgabespannung UQ0/Un	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke	0,8	1,2	Siehe E.9- Bogen
11	11325	Erzeugungsanlage Wirkleistung	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke			
11	11326	Erzeugungsanlage Blindleistung	Analog	M_ME_TF_1	Messwert, Gleitkommazahl mit Zeitmarke			
		Sollwerte						
11	11602	Vorgabe cos Phi	Analog	C_SE_NC_1	Sollwert-Stellbefehl, Gleitkommazahl	-1	1	Siehe E.9- Bogen
11		Vorgabespannung UQ0/Un	Analog		Sollwert-Stellbefehl, Gleitkommazahl	0,8	1,2	Siehe E.9- Bogen

Tabelle B 6.3.2: Datenpunktliste für Erzeugungsanlagen und Mischanlagen mit EZA Regler

Zu 6.3.3 Eigenbedarfs- und Hilfsenergieversorgung

Alle Sekundärgeräte in der Kundenlage sind mit Hilfsenergie zu versorgen.

Dazu gehören:

- Netzschutz
- Kurzschlussschutz
- Übergeordneter Entkupplungsschutz
- Mess- und Zähleinrichtungen
- Fernwirktechnik
- Kurzschlussanzeiger
- Bei Bedarf weitere Geräte

Hilfsenergieversorgung erfolgt aus dem gemessenen Bereich und wird vom Anschlussnehmer zur Verfügung gestellt. Zudem muss die Hilfsenergieversorgung über eine Überwachung verfügen, die eine Störung signalisiert und meldet.

Zu 6.3.4. - 6.3.4.3

Keine Ergänzungen

Zu 6.3.4.3.1 Allgemeines

Standardmäßig kommen unabhängige Maximalstromzeitschutz Geräte (UMZ Schutz) zum Einsatz, je nach Bedarf können zusätzliche Schutzfunktionen gefordert werden.

Betreibt der Anschlussnehmer ein kundeneigenes Kabelnetz (Kabel außerhalb der Übergabestation) im gelöschten Netz der SWUN, ist am Übergabeschalter zusätzlich eine Erdschlussrichtungserfassung zu installieren. Auf Anforderung der SWUN sind nach einem Störungsfall die Störungsaufzeichnungen und Störfallmeldungen zur Verfügung zu stellen.

Zu 6.3.4.3.2 HH-Sicherung

Die HH-Sicherungseinsätze sind grundsätzlich nach den Herstellervorgaben zu wählen. Die unten aufgeführten Tabellen sind empfohlene Werte aus Sicht der SWUN. Der maximale Nennstromwert liegt aufgrund von Selektivitätsgründen bei 80 A und die Nennspannungsebene der HH-Sicherung muss mit der Spannungsebene im MS-Netzgebiet übereinstimmen.

10 kV Transformatoren, Leistungen, Ströme und Absicherung				
Trafo / kVA	I prim	l sek	HH Sicherung [A]	NH Sicherung gG/gL [A]
50	2,89	72	10	100
75	4,33	108	10	125
100	5,77	144	16	160
125	7,22	180	16	200
160	9,24	231	20	250
200	11,55	289	25	315
250	14,43	361	31,5	400
315	18,19	455	31,5	500
400	23,09	577	40	2x315
500	28,87	722	50	2x400
630	36,37	909	63	2x500
800	46,19	1155	80	2x630

Tabelle A 6.3.4.3.2 10 kV

20 kV Transformatoren, Leistungen, Ströme und Absicherung				
Trafo / kVA	I prim	I sek	HH Sicherung [A]	NH Sicherung gG/gL [A]
100	2,89	144	10	160
160	4,62	231	16	250
200	5,77	289	16	315
250	7,22	361	20	400
315	9,09	455	20	500
400	11,55	577	25	2x315
500	14,43	722	40	2x400
630	18,19	909	40	2x500
800	23,09	1155	50	2x630

Tabelle B 6.3.4.3.2 20 kV

Technische Anschlussbedingungen Mittelspannung SWUN (Stand 01.08.2023) – Ergänzungen zur VDE-AR-N 4110 "TAR Mittelspannung"

Zu 6.3.4.3.3 Abgangsschaltfelder

Falls das Übergabefeld ohne Schutzfunktion installiert wird und die nachfolgenden Abgangsfelder mit Schutzfunktion, sind die Regeln aus Kapitel 6.3.4.3.1 einzuhalten.

Zu 6.3.4.3.4 - 6.3.4.4

Keine Ergänzungen

Zu 6.3.4.5 Schnittstellen für Schutzfunktions-Prüfungen

Es ist eine längstrennbare Prüfklemmleiste vorzusehen mit folgenden Funktionalitäten:

- Anbindung der Pr

 üfeinrichtung (Strom, Spannung, Generalanregung, Auslösung)
- Kurzschließen der Stromwandler

Die Prüfbuchsen (4mm) sind fingersicher nach DGUV Vorschrift 3 auszulegen.

Zu 6.3.4.6 - 6.4

Keine Ergänzungen

Zu 7 Abrechnungsmessung

Zu 7.1 Allgemeines

Ergänzend zu der VDE-AR-N 4110 und den in dieser TAR formulierten Anforderungen gelten die auf der Internetseite der SWUN aufgeführten Bedingungen an den Messstellenbetrieb (siehe dort die "Technischen Mindestanforderungen an den Messstellenbetrieb").

Zu 7.2 Zählerplatz

Zum Einbau der Mess- und Steuer- sowie der Kommunikationseinrichtungen ist in der Übergabestation ein Zählerschrank/Industrieschrank DIN 43870, bevorzugt DEPPE E950/550 D1-H1 mit WAGO Klemmblock + 5 B6 25 kA Automaten einzusetzen, deren Zählerplatzflächen für Dreipunktbestfestigung nach DIN VDE 0603-1 (VDE0603-1) Zählerplätze auszuführen sind.

Zu 7.3 Netz-Steuerplatz

Keine Ergänzungen

Zu 7.4 Messeinrichtungen

Lastgangzähler sind als indirekt-messende Lastgangzähler für Wirk- und Blindenergie mit der Genauigkeitsklasse entsprechend der VDE-AR-N 4400, zur fortlaufenden Registrierung der Zählwerte für alle Energieflussrichtungen im Zeitintervall von 1/4-Stunden vorzusehen.

Ist bei Erzeugungsanlagen eine einheitenscharfe Abrechnung erforderlich, hat der Anlagenbetreiber (der Erzeugungsanlage) dafür Sorge zu tragen, dass eine geeichte Messeinrichtung (bei neuem Zähler: Konformitätserklärung des Herstellers) für jede Erzeugungseinheit durch einen Messstellenbetreiber gemäß Messstellenbetriebsgesetz installiert wird.

Der Messstellenbetreiber stellt grundsätzlich den Zähler und die abrechnungsrelevanten Zusatzeinrichtungen zur Verfügung und verantwortet deren Montage, Betrieb und Wartung.

Wird aus einer Mittelspannungs-Übergabestation ein weiterer Anschlussnutzer (Unterabnehmer) versorgt, so sind die hierfür verwendeten Messeinrichtungen nach dem gleichen Standard und damit ebenfalls als Lastgangmessung oder als intelligentes Messsystem aufzubauen. Dies gilt auch für die für den Eigenbedarf bezogene Wirk- und Blindarbeit.

In Abstimmung mit dem Netzbetreiber ist im Falle mehrerer Anschlussnutzer, die über einen Mittelspannungs-Kundentransformator versorgt werden, der Aufbau paralleler RLM-Messeinrichtungen entsprechend der Messaufgabe möglich. In diesem Fall entfällt die mittelspannungsseitige Abrechnungsmessung.

Das Mittelspanungs-Messfeld muss beidseitig und von der örtlichen Arbeitsstelle aus sichtbar freigeschaltet werden können. Wird auf eine zusätzliche Trennvorrichtung nach dem Messfeld verzichtet, müssen abgehende Kabel/Verbindungen zu weiteren Anlagenteilen (Trafos, Unterstationen etc.) über ein schaltbares Abgangsfeld geführt werden (Ausnahme bei nur einem Trafo, wenn sich dieser im selben Gebäude und in unmittelbarer Nähe der MS-Schaltanlage befindet). Bei speziellen

Technische Anschlussbedingungen Mittelspannung SWUN (Stand 01.08.2023) – Ergänzungen zur VDE-AR-N 4110 "TAR Mittelspannung"

Anlagenkonfigurationen (z.B. Rechts-Links-Einspeisung) ist eine Trennvorrichtung nach dem Messfeld unverzichtbar. Spezielle Anlagenkonfigurationen sind stets in Rücksprache mit der SWUN zu planen.

Zu 7.5 Messwandler

Die Spannungswandler sind vom Netz der SWUN aus gesehen hinter den Stromwandlern anzuschließen.

Die Wandler müssen mindestens folgenden Bedingungen genügen:

Allgemein:

- MID-Konformitätserklärung- ist der SWUN zu übergeben (durch den Messstellenbetreiber)
- thermischer Kurzschlussstrom, Bemessungsstoßstrom und Isolationsspannung entsprechend Kapitel 6.2.1
- Messkerne und Messwicklungen zum Anschluss von EZA-Reglern für die Blindleistungsregelung/statische Spannungshaltung müssen mindestens der Klasse 0,5 genügen, bei Anschlussscheinleistungen der Kundenanlage SA > 1 MVA mindestens der Klasse 0,2 genügen
- Die Sekundäranschlüsse der Strom- und Spannungswandler dürfen die Trafostation grundsätzlich nicht verlassen

Spannungswandler:

- Standard-Anforderung an die Z\u00e4hlwicklung der Spannungswandler: Klasse 0,5; 15 VA; mit Zustimmung der SWUN darf abgewichen werden
- Spannungswandler sind als drei einpolig isolierte Spannungswandler auszuführen
- Die sekundäre Bemessungsspannung der Zähl- und Schutzwicklung der Spannungswandler beträgt 100 $\sqrt{3}$
- Bemessungsspannungsfaktor der Spannungswandler: 1,9 x Un/8 h (6 A)
- Schutzwicklungen der Spannungswandler für den übergeordneten Entkupplungsschutz müssen der Klassengenauigkeit 3P genügen, typischerweise kombiniert aus Klasse 0,5 und 3P
- Die Absicherung des 2. Kerns der Spannungswandler erfolgt über einen Spannungswandlerschutzschalter, z.B. Typ Siemens 3RV1611-1CG14. Der Spannungswandlerschutzschalter muss folgende Kriterien erfüllen: dreipolige Ausführung, Stellungsmeldung über Hilfskontakte und der Nennstrom darf maximal 1,4 A betragen. Installiert wird der Spannungswandlerschutzschalter in der Niederspannungsnische des Messfeldes oder in einem nahegelegenen separaten Verteiler.

Stromwandler:

- Standard-Anforderung an die Z\u00e4hlkerne der Stromwandler: Klasse 0,5s; 10 VA, FS 5; mit Zustimmung der SWUN darf abgewichen werden
- Der Primärstrom der Stromwandlerkerne für die Zählung ist den vertraglichen Leistungsanforderungen anzupassen
- Der sekundäre Bemessungsstrom der Stromwandler muss bei den Zählkernen bei ≤ 20 kV 5 A, bei den Schutzkernen 1 A betragen
- thermischer Bemessungs-Dauerstrom der Stromwandler: 1,2 x Ipn
- Schutzkerne der Stromwandler zum Anschluss von Kurzschlussschutzeinrichtungen müssen Kurzschlussströme von 6 kA im 10-kV-Netz und 3 kA im 20-kV-Netz entsprechend der Genauigkeitsklasse 5P oder besser gemäß DIN EN 60044-1 übertragen

Bereits im Zuge der Anlagenplanung ist eine rechtzeitige Abstimmung zwischen dem Anschlussnehmer und der SWUN über die bereitzustellenden Wicklungen und Kerne erforderlich. Die bei der SWUN verfügbaren Strom- und Spannungswandler können bei der SWUN nachgefragt werden. Detailliertere Angaben zu den geforderten Wandlerspezifikation sind auf Nachfrage bzw. auf der Internetseite der SWUN verfügbar.

Beistellung der Wandler durch die SWUN

Ist die SWUN der Messstellenbetreiber, so kommen bei 10-kV- und 20-kV-Netzanschlüssen nicht kippschwingungsarme Wandler in schmaler Bauform nach DIN 42600 Teil 8 und Teil 9 mit folgenden Kenndaten zum Einsatz:

3 einpolige **Spannungswandler** (2 Wicklungen)

Wicklung 1	Zählung	Klasse 0,5; 15 VA; MID-Konformität
Wicklung 2	Schutz	Klasse 0,2/3P; min.15 VA

Tabelle A 7.5: 3 einpolige Spannungswandler (2 Wicklungen)

Die Wicklung 2 kommt zum Einsatz, wenn Schutz- und/oder Betriebsmessaufgaben zu erfüllen sind (z.B. bei allen Erzeugungsanlagen).

3 Stromwandler (2 Kerne), bei Bereitstellung von der SWUN

Kern 1	Zählung	Klasse 0,5 S; 10 VA; 5 A; FS 5; MID-Konformität
Kern 2	Messwerte	Klasse 0,2/5 P; 5 VA; 1 A; FS 5

Tabelle B 7.5: 3 Stromwandler (2 Kerne), bei Bereitstellung von der SWUN

Der Kern 2 wird für den Anschluss von Parkreglern und/oder einer fernwirktechnischen Anbindung eingesetzt. Kern 2 können ebenfalls zum Anschluss eines $Q \to und U < -Schutzes genutzt werden.$ Eine von der Tabelle "Stromwandler" abweichende Auslegung der Stromwandler ist in begründeten Ausnahmefällen möglich, die Auslegung muss aber den oben genannten grundlegenden Anforderungen an die Stromwandler entsprechen.

Zu 7.6 Datenfernübertragung

Zählerfernauslesung

Erfolgt der Messstellenbetrieb durch die SWUN als grundzuständiger Messstellenbetreiber, so setzt er bei Lastgangzählern und intelligenten Messsystemen für die Zählerfernauslesung standardmäßig eine Funklösung ein. Sofern Einschränkungen des Signalempfanges am Installationsort bestehen, ist durch den Anschlussnehmer die Antenne an einem geeigneten und mit dem Messstellenbetreiber abgestimmten Ort abgesetzt zu montieren.

Dazu stellt die SWUN als grundzuständiger Messstellenbetreiber eine entsprechende Antenne bei. Sollte eine Funklösung nicht möglich sein, so ist der Anschlussnehmer verpflichtet, in unmittelbarer Nähe des Zählerplatzes dauerhaft einen mit der SWUN abgestimmten und betriebsbereiten Kommunikationsanschluss für die Fernauslesung der Messwerte bereitzustellen.

Bei Bedarf stellt der Anschlussnehmer eine Spannungsversorgung (230 V Wechselspannung) zur Verfügung.

Zu 7.7 Spannungsebene der Abrechnungsmessung

Im Falle eines einzelnen Anschlussnutzers erfolgt die Messung der von der an das Mittelspannungsnetz angeschlossenen Kundenanlage bezogenen bzw. eingespeisten elektrischen Energie grundsätzlich auf der Mittelspannungsseite.

Im Falle mehrerer Anschlussnutzer, die über einen Mittelspannungs-Kundentransformator versorgt werden, sind die hierfür verwendeten Messeinrichtungen grundsätzlich nach dem gleichen Standard und parallel aufzubauen. Werden diese Anschlussnutzer aus der kundeneigenen Niederspannung versorgt, sind diese Messeinrichtungen auf der Unterspannungsseite zu installieren.

Angaben zur Auslegung der Stromwandler bei Messung auf der Niederspannungsseite sind der TAR Niederspannung der SWUN zu entnehmen.

Zu 8 Betrieb der Kundenanlage

Zu 8.1 Allgemeines

Die im Eigentum des Kunden stehenden Betriebsmittel sind innerhalb seiner Verantwortung stets funktionstüchtig und sicher zu halten. Die Benennung der Anlagen- und Betriebsverantwortlichen des Kunden samt seinen Kontaktdaten erfolgt in der Regel in schriftlicher Form. Zusätzlich hat Name und eine im Notfall erreichbare Telefonnummer (24/7 - Erreichbarkeit) in der Transformatorstation ausgehängt und aktuell gehalten zu werden.

Jede Inbetriebsetzung/ Wiederinbetriebsetzung einer Kundenanlage setzt die Anwesenheit von mindestens einem Betriebsverantwortlichen zwingend voraus. Kontaktdaten zur Betriebsführung beider

Technische Anschlussbedingungen Mittelspannung SWUN (Stand 01.08.2023) – Ergänzungen zur VDE-AR-N 4110 "TAR Mittelspannung"

Parteien werden in regelmäßigen Abständen (jährlich) zwischen SWUN und Kunde abgeglichen. Hierfür dient das Formular "Inbetriebsetzungsauftrag", welches im Anhang 2 abgelegt ist.

Zu 8.2 - 8.4

Keine Ergänzungen

Zu 8.5 Bedienung vor Ort

Die Eigentumsgrenze zwischen Kunde und der SWUN sind die Kabelendverschlüsse der Ringkabelfelder (siehe Abbildungen im Anhang 4). Verfügungsbereich der SWUN sind die Ringkabeleinspeisefelder. In einer Vereinbarung zwischen SWUN und Anlagenbetreiber/Kunde werden Betriebsverantwortlicher, Ansprechpartner für den Störungsfall, schaltberechtigtes Personal sowie zugangsberechtigte Personen dokumentiert.

Folgende Angaben sind dabei jeweils erforderlich:

- Name
- Adresse
- Telefonnummer

Von dieser Vereinbarung ist eine Fassung für SWUN, eine Fassung für den Anlagenbetreiber/Kunden und eine Fassung zur sichtbaren Hinterlegung in der Übergabestation auszufertigen. Die entsprechende Vorlage hierzu befindet sich im Anhang 2 bzw. auf der dort benannten Website. Änderungen des Ansprechpartners sind umgehend schriftlich mitzuteilen. Dies gilt in beiden Richtungen.

Zu 8.6 Instandhaltung

Wartung und Instandhaltung sämtlicher im Eigentum des Kunden stehenden Anlagenteile sind turnusmäßig gem. Herstellerangaben und Normen durchzuführen. Dies gilt insbesondere für Übergabeleistungsschalter und Schutzeinrichtungen bzw. bei Bemessungsscheinleistung < 1 MVA den Lasttrennschalter samt HH-Sicherungen. Wartungsnachweise sind hier vom Kunden im Turnus von 4 Jahren der SWUN zu übermitteln. Instandhaltungsarbeiten sind der SWUN mit einer Vorlaufzeit von 4 Wochen anzukündigen. Kontaktperson ist hierbei aus Seite der SWUN jeweils das benannte Personal aus dem Bereich der Netzführung (siehe Abschnitt 8.1). Gleichfalls ist der SWUN regelmäßig ein Protokoll über den aktuellen Wartungs- und Instandhaltungsplan vorzulegen. Nichteinhaltung von Fristen oder fehlerhafte Funktionsprüfungen können dazu führen, dass die SWUN die Einspeisung unterbindet oder die Versorgung einstellt bis die Widrigkeiten behoben sind, da Gefahr in Verzug ist.

Zu 8.7 Kupplung von Stromkreisen

Hat die Kundenanlage weitere Netzanschlüsse dürfen diese nicht miteinander verbunden werden, auch nicht indirekt über die Niederspannungsanlage. Bei mehreren Netzanschlüssen muss Rücksprache mit der SWUN gehalten werden.

Zu 8.8 Betrieb bei Störungen

Im Störungsfall werden durch die SWUN keine Wiedereinschaltmaßnahmen von Anlagenteilen durchgeführt, die im Verfügungsbereich des Kunden stehen (z.B. Übergabeleistungsschalter). Durch die SWUN erfolgt die Tätigkeit in diesem Fall nur bis zur Verfügungsbereichsgrenze.

Zu 8.9. - 8.13

Keine Ergänzungen

Zu 9 Änderungen, Außerbetriebnahmen und Demontage

Geplante Änderungen (Tausch von Transformatoren, Tausch von Schaltanlagen, Tausch von Wandlern, personelle Änderungen, Änderung des Zugangs) sind möglichst frühzeitig der SWUN zu melden. Im Fall einer Leistungserhöhung der Transformatoren und/oder des Anschlusses bedarf es einer Genehmigung durch die SWUN. Weiterhin ist auch der Fall der Erweiterung um eine Eigenerzeugungsanlage anzeige- und genehmigungspflichtig. Kosten einer etwaigen Außerbetriebnahme einer Übergabestation (v.a. Durchverbindung der mittelspannungsseitigen Kabelschleife) trägt der Kunde.

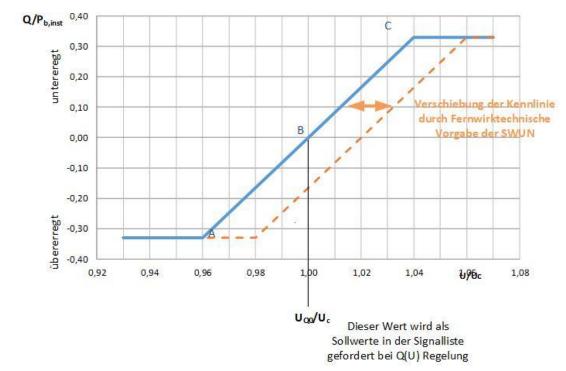
Falls sich durch eine Erhöhung der Netzkurzschlussleistung oder durch eine Änderung der Netzspannung gravierende Auswirkungen auf die Kundenanlage ergeben, teilt die SWUN dies dem Anschlussnehmer rechtzeitig mit. Der Anschlussnehmer trägt die Kosten der dadurch an seinem Netzanschluss entstehenden Folgemaßnahmen.

Dies betrifft auch Anpassungen an das Schutzkonzept in Form von Einstellungs- oder Hardwareänderungen nach Inbetriebnahme. Diese sind durch den Anschlussnehmer umzusetzen.

Die SWUN behält sich vor, die Anlage im Falle einer wesentlichen Änderung in Bezug auf aktuelle Vorgaben der SWUN sowie allgemeingültige Normen und Vorschriften neu zu bewerten und ggf. Auflagen zu benennen. Wesentliche Änderungen sind z.B. Nutzungsänderungen (Bezugs- / Einspeiseanlage). Grundsätzlich liegt es im Ermessen der SWUN, wann eine wesentliche Änderung vorliegt. Unabhängig davon muss die Personen- und Betriebssicherheit muss zu jedem Zeitpunkt gewährleistet sein und ist durch den Anlagenbetreiber sicherzustellen.

Zu 10 Erzeugungsanlagen

Zu 10.1 - 10.2.2.3


Keine Ergänzungen

Zu 10.2.2.4 Verfahren zur Blindleistungsbereitstellung

Verfahren a) Q(U) – Kennlinie

Anbindung im MS Netz der SWUN bei Un ≤ 20 kV

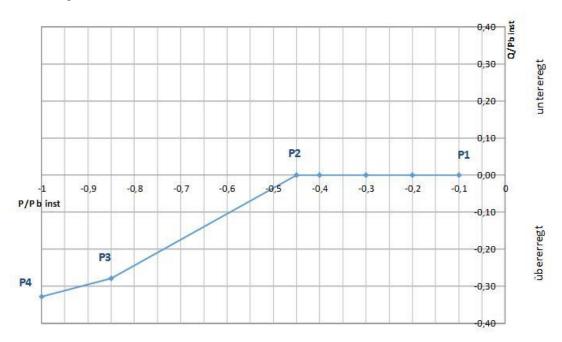
Die Erzeugungsanlagen sollen je nach Spannungswert am NAP selbstständig nach Kennlinie spannungssenkend oder -erhöhend wirken.

Die Erzeugungsanlagen soll fernwirktechnisch die Verschiebung der Vorgabespannung U_{Q0}/U_c Als Default – Wert soll ein U_{Q0}/U_c = 1,0 eingestellt werden

 $\begin{array}{l} U_{\text{Q0}}/U_c,\ max=1,04\\ U_{\text{Q0}}/U_c,\ min=0,96\\ Schritte=0,01\\ Spannungstotband\ von\ +/-\ 0,5\%\ von\ U_c \end{array}$

Leiter / Leiter Spannung U31

Bei Ausfall der FW – Anlage soll die Anlage auf einen festen cos phi von 0,95 (untererregtspannungssenkend) wechseln → Blindleistungsaufnahme


Bei Vorgabe der Q(U) Kennlinie ist eine Messeinrichtung in der Abrechnungsmessung einzusetzen, die neben P- und Q-Werten auch 15-Minuten Spannungswerte bereitstellt

Stützpunkte und Steigung der Kennlinie Q(U) mit Default – Wert:

Punkt	U/Uc	Q/P _{b,inst}
Α	Umin/Uc = 0,96	-0,33 (übererregt)
В	U _{Q0} /U _c	0
С	Umax/Uc = 1,04	+0,33 (untererregt)

Verfahren b) Q(P) - Kennlinie

Anbindung im SS UW/SW der SWUN bei Un ≤ 20 kV

Punkt	P/P _{b,inst}	Q/P _{b,inst}
P1	-0,10	0
P2	-0,45	0
P3	-0,85	-0,2794
P4	-1,0	-0,3287

Bei Ausfall der Fernwirkverbindung von SWUN zur Übergabestation oder EZA Regler oder Kommunikationsverbindung zur EZE:

- Q(P) bleibt in Betrieb dann ausgeführt an den EZE Klemmen, steht diese Funktion nicht zur Verfügung ist ein cos phi 1,0 einzustellen

Die Erzeugungsanlage muss zusätzlich Fernwirktechnisch auf das Verfahren d) fester cos phi umschaltbar sein

Im Einzelfall kann die SWUN ein anderes in der VDE-AR-N 4110 genanntes Verfahren der Blindleistungsbereitstellung vorgeben. Die konkret einzustellende Kennlinie gibt die SWUN mit dem Netzbetreiber-Abfragebogen vor

Zu 10.2.3.1 Allgemeines

Die Art der Dynamischen Netzstützung ("vollständige dynamische Netzstützung" oder "eingeschränkte dynamische Netzstützung") hängt von der Lage des Netzanschlussanschlusspunktes ab.

Sofern durch den Netzbetreiber projektspezifisch keine anderen Vorgaben (z. B. mit dem Netzbetreiber-Abfragebogen gemäß Vordruck der VDE-AR-N 4110) gemacht werden, gilt bei Erzeugungsanlagen vom Typ 2 mit Anschluss im 10/20-kV Netz bezüglich der Stromeinspeisung im Fehlerfall die vollständige dynamische Netzstützung mit einem Verstärkungsfaktor von k=2 am Netzverknüpfungspunkt.

Erzeugungsanlagen vom Typ 1 mit Anschluss im 10/20-kV-Netz liefern während des Netzfehlers ihren maschinenbedingten Kurzschlussstrom, der Verstärkungsfaktor k ist nicht einstellbar.

Die SWUN behält sich vor, während der gesamten Betriebsphase neue Vorgaben zu Art der dynamischen Netzstützung sowie zum Verstärkungsfaktor zu definieren.

Zu 10.2.3.2 - 10.3.3

Keine Ergänzungen

Zu 10.3.3.1 Allgemeines

Der übergeordnete Entkupplungsschutz und der Entkupplungsschutz an den Erzeugungseinheiten werden an unterschiedliche Wandler angeschlossen und wirken auf zwei verschiedene Schaltgeräte.

Ausfallzeiten aufgrund von Schutzprüfungen werden nicht entschädigt.

Zu 10.3.3.2 - 10.3.3.3

Keine Ergänzungen

Zu 10.3.3.4 Q-U-Schutz

Bei Erzeugungsanlagen mit einer Gesamtleistung ≥ 1 MVA oder bei drehenden Maschinen ≥ 0,5 MVA ist ein Q-U-Schutz erforderlich. Bei Erzeugungsanlagen mit eingeschränkter dynamischer Netzstützung oder einer Leistung < 1MVA kann auf den Q-U-Schutz verzichtet werden.

Zu 10.3.3.5 Übergeordneter Entkupplungsschutz

Die erforderlichen Messgrößen werden auf der Mittelspannungsseite in der Übergabestation erfasst. Die Funktionalität (Messwertbereitstellung, Auslösekreis) des übergeordneten Entkupplungsschutzes ist mit mittelspannungsseitiger Messwerterfassung in der Übergabestation auszuführen. Zur Bereitstellung der Steuer- und Messspannung kann unter Einhaltung der zulässigen Wandlerdaten die Schutz-/Betriebsmesswicklung des Messwandlersatzes genutzt werden. Die Funktion des Entkupplungsschutzes ist jederzeit sicherzustellen. Die Außerbetriebnahme von Teilen der Kundenanlage darf nicht zu einem ungeschützten Betrieb der Erzeugungsanlage oder Teilen davon führen. Dabei ist auch ein möglicher Zählertausch zu berücksichtigen.

Zu 10.3.3.6 - 10.3.4.2

Keine Ergänzungen

Zu 10.3.4.2.1 Übergeordneter Entkupplungsschutz

Sofern mit dem Anlagenbetreiber nichts Weiteres vereinbart wurde, sind folgende Einstellungen vorzunehmen.

Anschluss an die Sammelschiene eines UW

, alcollage all alc calliffications office offi.			
Funktion	Schutzrelais-Einstellwerte		
Spannungssteigerungsschutz U>>	1,20 U _C	300 ms	
Spannungssteigerungsschutz U>	1,10 U _C	180 s	
Spannungsrückgangsschutz U<	0,80 U _C	2,7 s	
Q-U-Schutz	0,85 U _C	500 ms	

Tabelle 10.3.4.2.1: Anschluss an die Sammelschiene eines UW

Zu 10.3.4.2.2 Entkupplungsschutz an den Erzeugungseinheiten

Sofern mit dem Anlagenbetreiber nichts Weiteres vereinbart wurde, sind folgende Einstellungen vorzunehmen.

Anschluss an die Sammelschiene eines UW

Funktion	Schutzrelais-Einstellwerte	
Spannungssteigerungsschutz U>>	1,25 U _{NS}	100 ms
Spannungsrückgangsschutz U<	0,80 U _{NS}	1,8 s oder Staffelung
Spannungsrückgangsschutz U<<	0,30 U _{NS}	800 ms
Frequenzsteigerungsschutz f>>	52,5 Hz	≤ 100 ms
Frequenzsteigerungsschutz f>	51,5 Hz	≤ 5 s
Frequenzrückgangsschutz f<	47,5 Hz	≤ 100 ms

Tabelle 10.3.4.2.2: Anschluss an die Sammelschiene eines UW

Falls die Erzeugungseinheit nicht bis 52,5 Hz betrieben werden kann, ist die Frequenzsteigerungsstufe f> auf 100ms und den technisch maximal möglichen Wert einzustellen.

Zu 10.3.4.3 - 10.3.5.3

Keine Ergänzungen

Zu 10.3.5.3.1 Übergeordneter Entkupplungsschutz

Sofern mit dem Anlagenbetreiber nichts Weiteres vereinbart wurde, sind folgende Einstellungen vorzunehmen.

Anschluss im MS-Netz

Funktion	Schutzrelais-Einstellwerte	
Spannungssteigerungsschutz U>>	1,20 U _C	300 ms
Spannungssteigerungsschutz U>	1,10 U _C	180 s
Spannungsrückgangsschutz U<	0,80 U _C	2,7 s
Q-U-Schutz	0,85 U _C	500 ms

Tabelle 10.3.5.3.1: Übergeordneter Entkupplungsschutz / Anschluss m MS-Netz

Zu 10.3.5.3.2 Entkupplungsschutz an den Erzeugungseinheiten

Sofern mit dem Anlagenbetreiber nichts Weiteres vereinbart wurde, sind folgende Einstellungen vorzunehmen.

Anschluss im MS-Netz

, and dring do min the real	, alcollage in the real				
Funktion	Schutzrelais-Eins	tellwerte			
Spannungssteigerungsschutz U>>	1,25 U _{NS}	100 ms			
Spannungsrückgangsschutz U<	0,80 U _{NS}	1,0 s			
Spannungsrückgangsschutz U<<	0,45 U _{NS}	300 ms			
Frequenzsteigerungsschutz f>>	52,5 Hz	≤ 100 ms			
Frequenzsteigerungsschutz f>	51,5 Hz	≤ 5 s			
Frequenzrückgangsschutz f<	47,5 Hz	≤ 100 ms			

Tabelle 10.3.5.3.2: Entkupplungsschutz an den Erzeugungseinheiten / Anschluss m MS-Netz

Falls die Erzeugungseinheit nicht bis 52,5 Hz betrieben werden kann, ist die Frequenzsteigerungsstufe f> auf 100ms und den technisch maximal möglichen Wert einzustellen.

Zu 10.3.5.4 - 10.6.4

Keine Ergänzungen

Zu 11 Nachweis der elektrischen Eigenschaften für Erzeugungsanlagen

Zu 11.1 - 11.5.4

Keine Ergänzungen

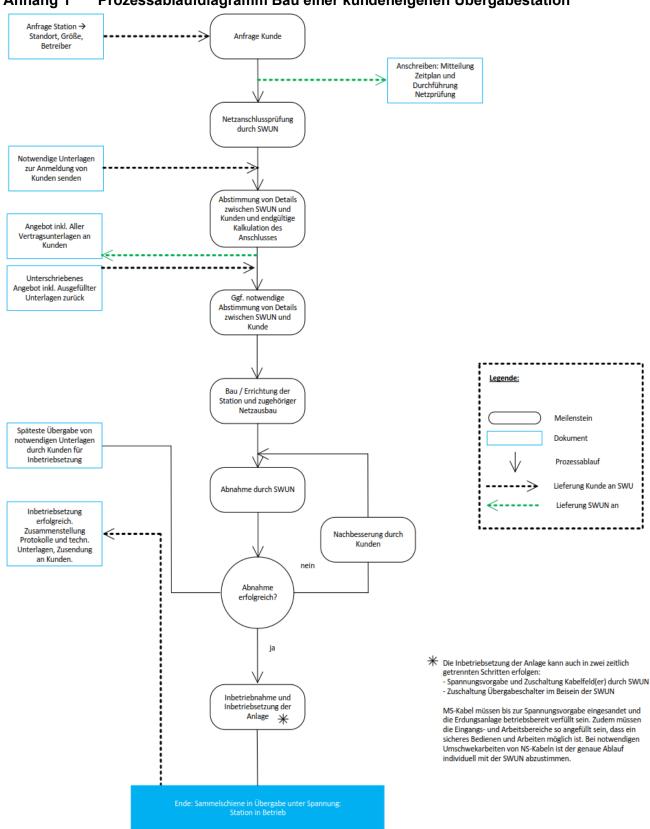
Zu 11.5.5 Betriebsphase

Folgende Dokumente sind der SWUN alle vier Jahre unaufgefordert zu übermitteln:

- Schutzprüfprotokolle der Schutzeinrichtungen am Netzanschlusspunkt und an den Erzeugungseinheiten
- Funktionsprüfung der Hilfsenergieversorgung der Sekundärtechnik in der Übergabestation

Zu 11.5.6 - 11.6.5

Keine Ergänzungen



Zu 12 Prototypen-Regelung

Keine Ergänzungen

Anhänge und Anlagenhistorie

Anhang 1 Prozessablaufdiagramm Bau einer kundeneigenen Übergabestation

Technische Anschlussbedingungen Mittelspannung SWUN (Stand 01.08.2023) – Ergänzungen zur VDE-AR-N 4110 "TAR Mittelspannung"

Anhang 2 Formulare

Es gelten grundsätzlich die Formulare der aktuell gültigen VDE-AR-N 4110 in der letzten Fassung als Basis.

Antragstellung für Netzanschluss (Mittelspannung) / für Eigenerzeugungsanlagen (Mittelspannung) ist über das Netzanschlussportal der Stadtwerke Ulm / Neu-Ulm Netze GmbH durchzuführen. Die benötigten hochzuladenden Unterlagen werden im Portal angezeigt.

Link: Netzanschlussportal

Darüber hinaus sind nachfolgend die SWUN-spezifischen Formulare aufgeführt und zu verwenden. Sie finden diese auf unserem Downloadportal unter dem Thema Strom.

Link: Downloads

Formulare Genehmigung / Abnahme Mittelspannungsanlagen / Trafostationen	Information:	Lieferung an:
TAR MS – Inbetriebsetzung und Inbetriebnahme	Auszufüllen vom Kunde	swutrafostationen@ulm-netze.de
E.6 - Erdungsprotokoll (Mittelspannung)	Auszufüllen vom Kunde	swutrafostationen@ulm-netze.de
TAR MS – Standard-Zählerschrank	Vorgabe SWU	
TAR MS – Übersichtsplan Wandlerverdrahtung	Vorgabe SWU	-
TAR MS – WAGO-Klemmblock	Vorgabe SWU	-
TAR MS – Maßbilder 10 kV-Wandler	Vorgabe SWU	-
TAR MS – Checkliste für Installation 10kV- und 20kV-	Dient nur als Hilfestellung	-
Messung		

Tabelle Anhang 2: Formulare Genehmigung / Abnahme Mittelspannungsanlagen / Trafostationen

Ohne vollständige Übermittlung der notwendigen Daten und Formulare verzögert sich an jeder Stelle der Gesamtprozess.

Anhang 3 Fristen

Die nachfolgend Tabellarisch dargestellten Fristen sind für den koordinierten Ablauf von Bauabwicklung über Abnahme bis hin zur Inbetriebsetzung einer Anlage zwingend einzuhalten.

Arbeitsschritt	Frist
Dokumentation für die Errichtungsplanung an SWUN	10 Wochen vor Baubeginn
Bestellung der Komponenten, Beginn Bau- und	Nach Übermittlung notwendiger Formulare gem.
Montagearbeiten	Checkliste Bearbeitungszeit SWUN mind. 10 Arbeitstage
Abgabe Inbetriebsetzungsauftrag bei SWUN	Mind. 10 Arbeitstage vor Inbetriebsetzung
Abstimmung Inbetriebnahme Fernwirktechnik	Mind. 10 Arbeitstage vor Inbetriebsetzung
Bittest Fernwirktechnik	Mind. 5 Arbeitstage vor Inbetriebsetzung
Inbetriebnahme der Station	Frühestens 2 Wochen nach mängelfreier Fertigstellung
Übergabe komplette aktualisierte Dokumentation mit erfolgter	Spätestens 2 Wochen vor Inbetriebsetzung
Einarbeitung eventueller Auflagen seitens der SWUN	
Übergabe Konformitätsbescheinigung Wandler durch	Spätestens 2 Wochen vor Inbetriebsetzung
Messstellenbetreiber an SWUN	
Technische Abnahme der Übergabestation durch Errichter im	Spätestens 2 Wochen vor Inbetriebsetzung
Beisein des Anlagenbetreibers und seines	
Anlagenverantwortlichen (SWUN-Teilnahme obligatorisch)	

Tabelle Anhang 3: Fristen

Anhang 4 Standard Anlagenkonfigurationen

Übergabestationen

Standard-Übergabestation mit Schaltanlage im Mittelspannungsnetz und mittelspannungsseitige Messung Anlagen mit S < 1000 kVA (nur ein Trafo)

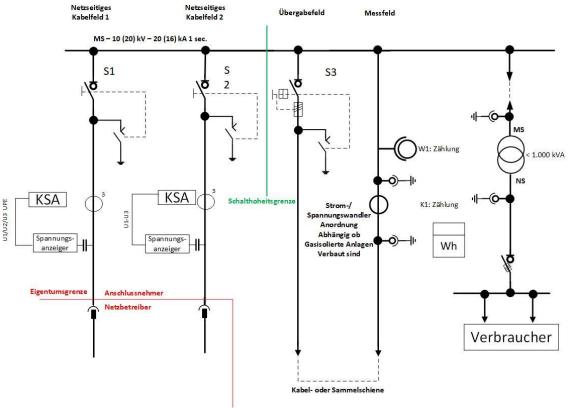


Bild A Anhang 4: Standard Anlagenkonfigurationen

Standard-Übergabestation mit Schaltanlage im Mittelspannungsnetz und mittelspannungsseitige Messung Anlagen mit S ≥ 1000 kVA (Abschnitt 7.4 ist zu beachten)

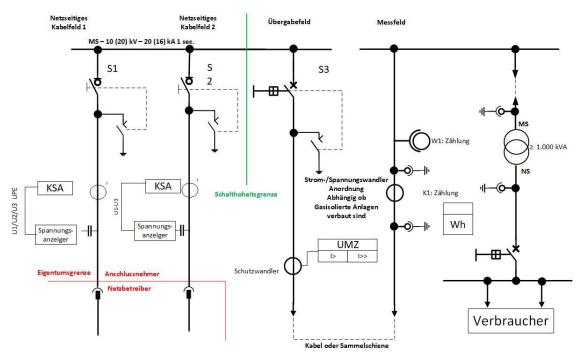


Bild B Anhang 4: Standard Anlagenkonfigurationen

Abweichende Konfigurationen sind mit der SWUN abzustimmen.

Standard-Übergabestation mit Schaltanlage im Mittelspannungsnetz und mittelspannungsseitige Messung Anlagen mit mehreren Trafos

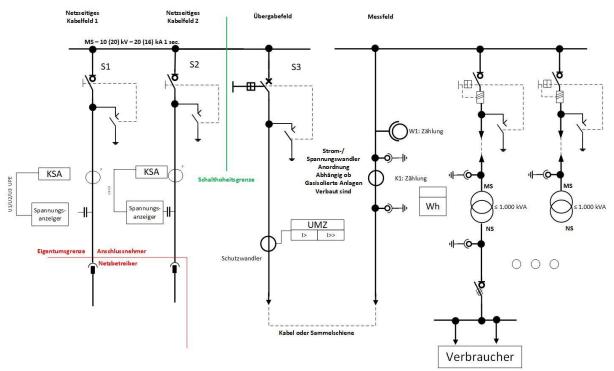


Bild C Anhang 4: Standard Anlagenkonfigurationen

Änderungshistorie

Andorangemeterio			
Datum	Version	Erstellt durch	Beschreibung der Änderung
01.08.2023	001	Bernau	Erstellung der TAR
15.04.2024	002	Bernau	Aktualisierung Punkt 6.2.1.1, 6.2.2.2, 10.2.3.1
06.11.2024	003	Bernau	Aktualisierung Punkt 6.2.2.1, 6.2.2.2, 6.3.2, 6.3.3, 7.4, Anhang 4 Bild A, Anhand 4 Bild B
28.04.2025	004	Bernau	Aktualisierung Punkt 10.3.4.2.1 und 0.3.5.3.1 Aktualisierung Schaltbilder Anhang 4
20.11.2025	005	Bernau	Aktualisierung Punkt 6.2.2.2, 6.2.4, 6.3.2, 7.4, 7.5, 10.2.2.4 und 10.3.4.2.2, Aktualisierung Anhang 2